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Abstract

To better understand and to help optimize the electroforming portion of the LIGA pro-
cess, we have developed one and two-dimensional numerical models describing electrode-
position of metal into high aspect-ratio molds. The one-dimensional model addresses
dissociation, diffusion, electromigration, and deposition of multiple ion species. The
two-dimensional model is limited to a single species, but includes transport induced by
forced flow of electrolyte outside the mold and by buoyancy associated with metal ion
depletion within the mold. To guide model development and to validate these mod-
els, we have also conducted a series of laboratory experiments using a sulfamate bath
to deposit nickel in cylindrical molds having aspect ratios up to twenty-five. The ex-
perimental results indicate that current densities well in excess of the diffusion-limited
currents may still yield metal deposits of acceptable morphology. However, the numer-
ical models demonstrate that such large ion fluxes cannot be sustained by convection
within the mold resulting from flow across the mold top. Instead, calculations suggest
that the observed enhancement of transport probably results from natural convection
within the molds, and that buoyancy-driven flows may be critical to metal ion trans-
port even in micron-scale features having very large aspect ratios. Taking advantage of
this enhanced ion transport may allow order-of-magnitude reductions in electroforming
times for LIGA microdevice fabrication.
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Introduction

LIGA, an acronym from the German words for lithography, electroforming and
molding, is a promising new process for producing high aspect-ratio metal microdevices
having micron to millimeter features [1,2,3]. In LIGA, high-energy x-ray lithography
is used to produce a deep non-conducting mold [4,5,6] that is subsequently filled by
means of electrodeposition to produce metal parts. The final step in true LIGA is injec-
tion molding for mass production, here using the electroformed metal part as a mold.
Currently under worldwide development, this process offers a means to manufacture
high resolution, high aspect-ratio devices including microscale valves, motors, solenoid
actuators, and gear trains [7-10]. Such devices cannot be fabricated either by silicon
micromachining or by precision machine tool operations.

Most previous research in LIGA has focused on lithography and developing [4-
6,11,12]. Electrodeposition for LIGA has been relatively neglected, despite several se-
rious problems. Large-scale voids in the deposited metal occur frequently and often
without apparent cause. Similarly, local deposition rates within a mold vary widely de-
pending on local feature sizes and on the macro-scale geometry of collections of features.
Such local variations in deposition rate lead to uneven mold filling and, eventually, to
regions of the mold that cannot be filled completely. Further, deposition surfaces are
often rough or wavy, necessitating post-deposition polishing to produce parts having
acceptable tolerances and surface finish. These problems are due in part to the deple-
tion of metal ions and the accumulation of hydrogen in the layer between the top and
bottom of the mold [13,14]. The presence of this layer distinguishes electrodeposition
for LIGA from all traditional electroplating and electroforming processes. As a result,
traditional electroplating practices have not proven very effective in filling the deep holes
and trenches characteristic of LIGA molds.

Many of these problems likely result from transport limitations that arise because
the electrolyte in deep mold features may remain nearly stagnant, even despite vigor-
ous bath stirring. In such a transport-limited growth process, the deposition surface
will typically roughen and become unstable as deposition rates are increased and ion
depletion becomes significant. Hydrogen gases may also be generated when ion de-
pletion is significant, leading to a second mechanism for anomalies in the deposition
surface. Although it may be possible to avoid these nonuniformities by reducing de-
position rates, the electroforming portion of the LIGA process presently may require
days or even weeks. Thus further reducing deposition rates may become burdensome to
overall LIGA processing cost and cycle time. In addition, the very low overpotentials
associated with low current densities and low deposition rates may themselves produce
unacceptable metal morphologies.

To help understand these problems and to help optimize the process, we have de-
veloped a pair of numerical models. The first is a one-dimensional model describing the
electric field and diffusion, dissociation, electromigration, and the deposition kinetics
of multiple ion species. This model is used to compute spatial variations in ion con-
centrations, local pH and associated surface deposition rates based on bath chemistry,
mold geometry and applied current for cases in which electrolyte within the feature
may be considered stagnant. Both steady and transient solutions can be computed
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using this multi-species model. The second is quasi-steady two-dimensional model ad-
dressing forced and buoyancy-driven convection, as well as diffusion, outside and within
the mold. This second model considers only a single species, but includes deposition ki-
netics of a form similar to those of the multi-species model. Together, these two models
address all key physics of the electrodeposition of metal into high aspect-ratio molds.

In parallel with model development, we have also conducted a series of laboratory
experiments. These experiments were designed to provide well characterized boundary
conditions in order to obtain both qualitative and quantitative insight into the trans-
port processes inside mold features. By observing the deposit morphology for various
mold depths, aspect ratios and plating currents, these experimental results have iden-
tified the acceptable operating conditions for nickel deposition from a sulfamate bath.
Comparison of these observations with our numerical results has helped to guide model
development and to validate the numerical results. This combined experimental and
numerical approach has revealed that buoyancy-driven ion transport can enhance de-
position rates by an order-of-magnitude or more relative to those possible by diffusion
alone.

Governing Equations: Multi-Species Transport

To model electrodeposition in LIGA molds, we consider the simplified geometry
of a single mold feature as shown in Fig. 1. Far from the mold top, y À h, species
concentrations are at uniform values and the fluid moves with a uniform speed from
left to right. This uniform far-field flow produces a linear gradient of the fluid speed
in a boundary layer just above the mold top and upstream of the feature. The shear
along the mold top is transmitted to the fluid at the top of the feature, and this may
drive recirculating convection cells below. However, as later discussed the effects of this
forced convection are negligible when the aspect ratio is large, even when fluid speeds
at the mold top are also very large.

We first address the case in which buoyancy forces and the associated natural convec-
tion within the feature can be neglected. The conditions under which this is appropriate
are also discussed later. In the absence of natural convection, electrodeposition inside
the feature is nearly one dimensional, provided that the aspect ratio of the feature
A = h/w is large. For this reason, the electric field and species transport equations
may be written as second-order differential equations in time and the spatial position
along the mold. Species concentrations, ci, within the feature are governed by species
conservation equations [15],

∂ci
∂t

+∇·J = Si (1)

where t is time, J are the species fluxes, and Si are volumetric sources or sinks associated
with homogeneous reactions. Note that the concentrations ci represent both neutral and
ionic species, and that ionic species may be both metallic and nonmetallic.

The species fluxes are given by [15]

J = −Di∇ci + eυiziciE (2)
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Figure 1. Schematic of a
LIGA mold feature. Such
a feature may be either a
trench or cylinder. Metal
ions are carried from the
mold top to the deposition
surface at the feature bot-
tom by convection, diffusion
and ion drift due to the ap-
plied electric potential. The
feature aspect ratio is given
by A = h/w.

where Di is the effective diffusivity of the ith species, e is the elementary charge, and
zi is the species charge number. Note that the first term on the right of Eq. (2) de-
scribes ordinary diffusion of the species, while the second term describes ion drift due
to the presence of the electric field. In this second term, the ion mobility, υi, is usually
approximated as

υi =
Di

kT
(3)

where k is the Boltzmann constant, and T is the local temperature.
Recognizing that the time scale for establishing a DC electric field is much smaller

than that for establishing species concentration fields, we consider here only the case
of the electrostatic field. Under this restriction, and the further restriction that there
are no applied magnetic fields, the electric field, E, is governed by the Poisson equation
relating the electric field to the local charge density.

∇·E =
4π
ε

n∑
i=1

ezici (4a)

where E = −∇V is the negative of the gradient of the electric potential V , ε is the
dielectric constant, and n is the total number of ionic species. A common alternative
to solving the Poisson equation is to enforce local electroneutrality. In this case, the
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electric field E becomes an unknown constant to be determined as part of the overall
solution, and the governing equation becomes

n∑
i=1

zici = 0 (4b)

Like the Poisson equation, this condition of electroneutrality applies at every point in
the concentration field, except within the Debye layer adjacent to each electrode. These
regions are instead accounted for by the Butler-Volmer relations.

Consistent with the assumption of an electrostatic field, there may be no time-
dependent variation in the local charge density. This is equivalent to

∇·I = ∇·
(

n∑
i=1

Ii

)
= ∇·

(
n∑
i=1

ziJ

)
= 0 (5)

Currents associated with each ion species can be computed easily after the basic trans-
port equations have been solved. These are given as the sum of the two contributions
to the ion fluxes,

Ii = FziJ = −FziDi∇ci + F 2υiz
2
i ciE (6)

where Ii is the current due to the ith species, and F is Faraday’s constant. Paralleling
the flux equations (2), the first term on the right of Eq. (6) is the current due to ordinary
diffusion, while the second contribution results from ion drift due to the electric field
acting on charged species.

Equation (5) closes the conservation equations for species and electric charge. For
the case of diffusive transport considered just now, momentum equations are not re-
quired. Similarly, energy equations are everywhere replaced by an assumption that the
temperature, T , is uniform and constant. In one dimension , the system of equations
described above thus consists of 2n+1 unknowns (ci, J·j , and E·j ) and 2n+1 equations
(2, 4a or 4b, and 5). This system of equations can in general be solved given a specified
set of species, corresponding homogeneous and surface reactions, and appropriate initial
and boundary conditions.

Method of Solution

To solve the governing species and field equations, we now consider a problem of
the codeposition of nickel and iron from a sulfate solution. This particular codeposition
process is important to LIGA in that it permits the fabrication of magnetic devices from
permalloy. For this nickel-iron sulfate bath we consider eight reactive species. These are
Fe2+, FeOH+, Ni2+, NiOH+, HSO−4 , SO2−

4 , OH−, and H+. The H2O concentration is
assumed constant at 55 mol/`. Diffusivities of these species are all about Di ≈ 1×10−9,
except for the hydroxyl group for which DOH− ≈ 5× 10−9.
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The sources or sinks in Eq. (1) arise from homogeneous reactions among these eight
species. While many such reaction are possible, here we limit our attention to just the
four thought to be most important. These are

Fe2+ + OH− ⇀↽ FeOH+

Ni2+ + OH− ⇀↽ NiOH+

H2O ⇀↽ H+ + OH−

HSO−4 ⇀↽ H+ + SO2−
4

(7)

Equilibrium constants for these four reactions are about [16] cFeOH+/cFe2+cOH− = KFe ≈
3.2 × 104 M−1, cNiOH+/cNi2+cOH− = KNi ≈ 1.3 × 104 M−1, cH+cOH−/cH2O = KH2O ≈
1.0 × 10−14 M, and cH+c

SO2−
4
/c

HSO−4
= K

HSO−4
≈ 1.3 × 10−2 M. Note that use of the

right hand portion of these expressions does not necessarily imply equilibrium of the
homogeneous reactions, provided that equilibrium constants are interpreted simply as
the ratio of the forward and reverse reaction rates. In that case, either the forward or
reverse rate must also be specified, and the remaining rate is then determined by the
equilibrium constant.

Cathode reactions at the electrodeposition surface will generally involve both the
doubly-charged metal ions and the singly-charged metal hydroxides. These reactions
can be expressed as

M2+ + 2e→ M (8)

for the bare metal ions, and

2 MOH+ + 2e→ M + OH− (9)

for the hydroxides. Here, M represents any metallic species. All other species are
considered to be inert with regard to cathode reactions, with the exception of hydrogen.
Hydrogen is involved in two cathode reactions. The first is the formation of hydrogen
gas from the protium cation,

2 H+ + 2e→ H2 (10)

while the second is the dissociation of water,

2 H2O + 2e→ H2 + 2 OH− (11)

to form hydrogen gas and a hydroxyl radical.
The rates associated with these fundamental reactions can all be expressed in terms

of the local potential, V , and local ion species concentrations, ci. Fluxes at the cathode
surface, y = 0, are given by [17,18]

Ji = aicie
−αiF(V−Vi)/RT (12)

Vi = V0i +
RT

Fzi
ln
(
ci
c0i

)
(13)
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where Ji = J·j , ai is the pre-exponential rate constant, αi is the charge separation
constant, and V0i and c0i are the reference potential and reference concentration, re-
spectively. These rate relations are commonly known as the Butler-Volmer kinetic
equations. Values of the constants in these equations are widely reported [17,18]. As
discussed later, however, there are very large uncertainties in these values.

The special case of the governing transport equations we are considering here is
when the fluid velocity everywhere within the feature is zero. This approximation is
widely used in models of traditional electroplating. For that purpose, the height of the
stagnant diffusion layer is equal to the diffusion boundary layer thickness. However,
under a significant range of conditions, this approximation is likewise applicable to ion
transport within deep LIGA features, and in this case the diffusion height is equal
to the mold thickness. Further, growth of the deposition surface in all electroplating
processes takes place on a time scale very long compared to the relaxation time of the
ion concentration fields. Because of this, the time derivatives in the species conservation
equations may be neglected when the applied electric potential is time invariant.

Under these restrictions, the transport equations (1) and (2) may be rearranged to
give,

∂

∂y
(JFe2+ + JFeOH+) = 0 (14)

∂

∂y
(JNi2+ + JNiOH+) = 0 (15)

∂

∂y

(
JH+ + JOH− + J

HSO−4
+ JFeOH+ + JNiOH+

)
= 0 (16)

These forms of the conservation equations are useful in that each equation is directly
related to the partial current density of a single elemental species. Under the restrictions
above, the partial currents for iron, nickel and hydrogen are

IFe·j = 2F (JFe2+ + JFeOH+) (17)

INi·j = 2F (JNi2+ + JNiOH+) (18)
and

IH2 ·j = F (JH+ + JOH− + J
HSO−4

+ JFeOH+ + JNiOH+) (19)

These three partial currents are of practical importance because they are directly related
to the deposition rates of nickel and iron and to the rate of hydrogen generation. The
latter is important when ion fluxes are comparable to the diffusion limited ion transport
rates since hydrogen that cannot be diffused from the cathode surface will lead to
hydrogen bubble formation. Hydrogen bubbles that do not detach from the cathode give
rise to poor morphology of the deposited metal. Moreover, even high concentrations of
hydrogen may lead to poor metal properties as hydrogen may become entrapped in the
metal during the deposition process.

This system of equations is implicitly coupled through the homogeneous dissociation
reactions and through either the Poisson equation or local electroneutrality condition.
The resulting system of differential equations and algebraic constraints can be integrated
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numerically using DASSL [19], a stiff ODE and algebraic solver specifically intended for
problems of this type. Integration is begun from the top of the mold using bath con-
centrations that satisfy the equilibrium dissociation relations and the electroneutrality
condition. A multi-parameter shooting technique is then employed to satisfy the mixed
boundary conditions at the deposition surface. The three shooting parameters are the
nickel and iron partial currents and the cathode potential, V ; the three targets are
the total current and the two the Butler-Volmer equations relating the ion fluxes to
the ion concentrations for the iron and nickel species. This technique is useful when
solving problems in which the total current is specified. Alternatively, the problem
may be solved without shooting by specifying a cathode potential; in this case the un-
known partial and total currents are computed after the ion concentrations have been
determined.

This second technique is also employed when solving the time-dependent trans-
port problem. Such problems arise in computing usable duty cycles for pulsed plating.
Pulsed plating appears to offer significant advantages for LIGA electrodeposition be-
cause peak currents may be large enough to obtain acceptable morphologies, while the
mean or time-averaged current is small enough to avoid ion transport limitations and
the accompanying ion depletion at the deposition surface. In the solution method for
transient problems, the governing ion transport equations (1), (2) and (4) are spatially
discretized on a grid of m points, as is the Poisson equation. This leads to a set of
m(n+ 1) coupled time-dependent equations where mn equations represent the ion con-
centrations. The remaining m equations represent the electric field. DASSL is again
used to solve the coupled system of equations. In this transient case, however, the ho-
mogeneous reactions need not be in equilibrium. For problems in which the forward or
reverse reaction rates are known in addition to the equilibrium constants, the forward
and reverse reaction rates may be treated explicitly as either sources or sinks in Eq. (1).

Sample Calculations: Multi-Species Transport

Numerical results are shown in Fig. 2 for the codeposition of nickel and iron from a
0.5 M NiSO4 and 0.1 M FeSO4 bath at a pH of 3. The height of the mold is 100 µm. As
this problem was previously solved by Grande and Talbot [16], it serves as a check of
our numerical calculations. Figure 2 displays computed ion species concentrations for
a 100 µm deep mold at a total current of 400 A/m2. This result shows that hydroxide
species concentrations increase dramatically from the bath through the mold thickness
when currents are large, even though the total nickel and iron concentrations do not
show significant depletion. Thus hydrogen bubble formation may also occur before any
noticeable decline in deposition efficiency. Moreover, because metals may be deposited
either from the bivalent metal ions or from hydroxides of the metallic species, this
increase in hydroxide concentrations may alter the composition and morphology of the
deposited material.

The results of Fig. 2 agree well with those of Grande and Talbot. As their analysis
did not include ion drift due to the electric field, this observation confirms that ion drift is
not very important in this sample problem. Having examined a broad range of problems,
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Figure 2. Distribution of
ion species through a LIGA
mold feature for codeposi-
tion of nickel and iron from
a sulfate bath. Species con-
centrations change rapidly
through the thickness due
to an abrupt increase in pH.
Note that total concentra-
tions of the iron and nickel
bearing species do not vary
significantly from the mold
top (right) to the deposition
surface (left). Mold height
is h = 100 µm and the im-
posed current is 400 A/m2.

we conclude that ion drift is generally limited to less than about 10% of the diffusive
flux for all problems of practical importance to LIGA. Their analysis similarly did not
include either local or global electroneutrality. Instead, this condition was replaced by
a requirement that the total concentration of sulfate species was uniform across the
diffusion layer. Despite this discrepancy, the two results remain in good agreement,
and this suggests that the solutions may also be insensitive to the use of either the
Poisson equation or electroneutrality to determine the electric field. By solving the
equations using both of these approaches, we have confirmed that this is again the case
for problems of practical importance to electroplating for LIGA device fabrication. This
is an important observation since the computational effort required for the two methods
differs by several orders of magnitude; the Poisson equation is notoriously difficult to
solve in the context of a transport problem owning to the extremely large value of the
term 4πe/ε ≈ 1014 on the right of Eq. (4a).

Figure 3 shows sample calculations of the local pH for the same conditions used to
produce Fig. 2, except that here the total current is varied between 100 and 400 A/m2.
The pH at the deposition surface is important in all plating processes since it affects
the deposition morphology as well as the onset of hydrogen formation via hydrolysis. In
Fig. 3 we see that the pH at the deposition surface (left of plot) remains nearly constant
at the bath value up to a critical current density of about 100 A/m2. The surface pH
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through mold thickness of
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then abruptly climbs and the region of high pH moves off the surface toward the mold
top as the current is further increased.

An important consequence of these results is that the currents shown in Fig. 3 are
well below the diffusion limited current for this mold height. For a simple diffusion
layer, this limiting current is given by

Ilim = 2F
c0D

h
(20)

Based on a combined bath concentration of c0 = 0.6 × 103 mol/m3, D ≈ 10−9 m2/s
and h = 100 µm, the limiting current is Ilim = 1100 A/m2. Thus dramatic increases in
the surface pH are evident when the imposed current is only about 20% of the limiting
value.

Because pH at the deposition surface strongly affects the morphology of deposited
metal, it provides one basis for selecting a desired current density. Since deposition
rate is proportional to current (provided that current efficiencies remain near unity),
the highest possible current is desired in order to minimize the total processing time.
However, excessive current densities lead to poor morphology, so some optimum current
must exist. To help identify these optimum currents for a sample problem, we have
made a series of calculations for nickel deposition from a 1.0 M sulfate bath at an initial
pH of three. In these calculations, the surface potential was adjusted to a point where
the surface pH reached a specified value of either four or nine. The results of these
calculations are shown in Fig. 4.
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The symbols shown in Fig. 4 are the computed total currents corresponding to a
given pH at the deposition surface, for a given mold height, h. The dashed curve in
this figure is the diffusion limited current given by Eq. (20). The two solid curves are
simply the diffusion limited current shifted downward by a fixed multiplicative factor.
Currents along the solid curve for pHS = 4 are 29% of the limiting values, while those
for pHS = 9 are 52% of the limiting values. The generally good agreement between
these solid curves and the numerical results over a wide range of mold thicknesses
indicates that the transport problem scales well with mold thickness, and that a given
increase in surface pH will correspond roughly to given ratio of the actual and limiting
currents. These results can therefore be scaled approximately to other bath compositions
simply by increasing or decreasing the currents shown in proportion to the actual bath
ion concentration. Moreover, plating solutions other than nickel sulfate will probably
exhibit similar behavior since the effective binary diffusivities of all small ions in an
aqueous solution is order 10−9 m2/s. Only the addition of pH buffers to the plating
bath is likely to have a strong influence on this conclusion [20].
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Electrode Kinetics

Although ion transport mechanisms and related material properties are fairly well
understood, there is considerable uncertainty in defining the nature and kinetics of elec-
trode reactions. In recent years Hessami and Tobias [17], Matlosz [21], and Krause,
et. al. [18] have formulated alternative reaction mechanisms, including associated ki-
netics equations, intended to explain anomalous codeposition of nickel and iron. The
anomaly in the process is that relatively much more iron is deposited than is explained
by its ion concentration in the electrolyte [23,24]. Further, the composition of the de-
posit depends not only on the bath composition, but also very strongly on the total
current. Each of these models is conceptually distinct, each is consistent with a limited
subset of data, yet none can explain all observed results. As seen in Fig. 5, even the
qualitative behavior of these three models is quite different when all three are applied to
the same plating conditions. Although all three models indicate increasing dominance
of iron at high current, the slopes and crossover points differ significantly among the
models.

If the currents of Fig. 5 are instead plotted as a function of the electric potential, we
find nearly an order of magnitude variation in deposition rates between these models
and factor-of-two differences in their Tafel slopes for elemental deposition of nickel in
the absence of iron. Moreover, the data of Grande and Talbot [25] indicates that nickel
deposition increases in the presence of iron, whereas that of Dahms and Croll [26],
used to produce their kinetics model, suggests just the opposite. We are currently
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seeking to explain some of these apparent inconsistencies by a model that recognizes
the dependence of deposition kinetics on the alloy composition of the plating surface.

This new model is based on the observation that reference potentials for the electrode
kinetics are specific to deposition on a surface consisting of the metal of the ion being
deposited. Since this is not the case for alloy deposition, the reference potentials must
be adjusted to reflect the instantaneous composition of the deposition surface. The
difficulty in implementing this model is that the surface composition depends on the
iron and nickel currents, and these are the very quantities we are seeking to compute. To
solve this problem we use an iterative method in which the reference potential for each
species is shifted by an amount proportional to the partial current densities of all other
species. From initial guesses of each partial current, shifts in all reference potentials
are first computed. The partial and total currents are then calculated using the shifted
reference potentials, and these currents are then used as new guesses for repeating the
iteration. This method usually converges quickly, and the results provide much better
agreement with measured currents and potentials over a wide range of conditions than
do previous models.

Experimental Method

The objective of our experimental work was to observe the effects of mass transport
limitations on electroplating under conditions similar to those found in LIGA applica-
tions. The apparatus was designed to establish a well-defined feature geometry and
well-characterized fluid flow external to the mold, so that experimental results could be
compared readily with those of our numerical models of the ion transport and deposition
processes. The experimental system is intended to mimic the essential characteristics of
electroplating for LIGA components, in particular, these investigations have focused on
feature geometries having high aspect ratios. The observables in these experiments in-
cluded current efficiency and cell voltages during electrodeposition, and the morphology
of the deposits produced at various applied current densities.

The configuration of the electroplating apparatus is shown schematically in Fig. 6.
The apparatus consists of a closed channel having a rectangular cross-section through
which an electroplating solution can be pumped at various flowrates. The channel was
machined from polycarbonate (Lexan) to allow visual observation during setup and
operation. The channel is nominally 0.3 m long and the cross-section is 50 mm wide
by 20 mm high. A cathode mold, containing several identical recessed electrodes whose
recess diameter and length can be varied, and an anode, appropriate to the metal being
deposited, are mounted in opposite walls of the flow channel with faces parallel to the
direction of flow and flush with the surfaces of the wall. The reservoir of plating solution
is maintained at its operating temperature by an immersion heater and is mechanically
stirred to maintain uniform temperature and composition as the solution is recirculated.
Isolation valves are incorporated into the flow loop to permit initial evacuation of the
plating cell using a small mechanical vacuum pump, thereby ensuring that the cathode
recesses will be completely filled with liquid when the plating solution is backfilled into
the cell.
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Figure 6. Schematic di-
agram of the flow cell elec-
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A photograph of the cathode mold mounting arrangement on the plating cell is
shown in Fig. 7. The cathode mold is clamped against the channel wall by the metal
frame and screw to seal against leakage. The holes are typically oriented such that
the cathode sheet faces upward to allow gas bubbles to rise away from the deposition
surface. We used cylindrical cathode molds as such geometry is readily amenable to
computational modeling. Cathode molds were machined from acrylic rod stock (Lucite)
and typically had as many as eight identical cylindrical holes drilled completely through
molds of various thicknesses. By varying the diameter, d, of the holes and the thickness
of the mold, h, a wide range of aspect ratios, A = h/d, were produced by conventional
machining methods. Although the absolute dimensions of these molds were much larger
than typical LIGA masks that are produced lithographically, aspect ratios as large as
25 were achieved without the complexity and expense of using the synchrotron-based
LIGA process.

Electroplating experiments were conducted using a commercial nickel sulfamate so-
lution at a nominal temperature of 50 C. Electroplating was performed at constant cur-
rent using a galvanostat-potentiostat (Model 363, Princeton Applied Research, Prince-
ton, NJ) to control the applied current and to monitor the anode-to-cathode polariza-
tion during plating. A Macintosh SE computer operating OmegaBench data acquisition
hardware and software (Omega Engineering, Stamford, CT) collected and stored the
data (cell voltage, current, total charge) during each experiment. The current output of
the data acquisition system agreed with a NIST-traceable ammeter within 0.5%. Cur-
rent densities varying from 11 to 1300 A/m2 were applied to a number of cathodes over
periods as long as 24 hours to produce deposits having a thickness of about 1 mm. An-
nealed copper sheet, 75 µm thick, was used as the cathode in all experiments and was
cleaned in hot caustic solution, pickled in hydrochloric acid, and rinsed, before being
mounted on the cathode mold. The anode was a slug of high-purity nickel anode ma-
terial that had been machined such that the upper surface could be sealed against the
wall of the flow cell by a rubber O-ring. The active surface of the anode was a flat disc
having a surface area of approximately 500 mm2, much larger than that of the cathode

14



Figure 7. Close-up view
of the flow cell apparatus
showing the cathode mold
assembled for an experi-
ment. The tab protruding
on the left of the cathode
mold (clear cylinder) is the
cathode sheet.

mold in any experiment. The anode disc and the patterned cathode were axially aligned
to produce uniform polarization of the segments of the cathode mold during plating.

The cathode molds used for these experiments had cylindrical recesses ranging from
1.7 mm to 6.3 mm in diameter and depths ranging from 10 to 43 mm, producing aspect
ratios between 1.6 and 25. A detail view of a typical cathode mold assembly is shown in
Fig. 8. Eight symmetrically arranged holes are evident within the circle defined by the
O-ring used to seal the mold against the wall of the channel. The right photo shows the
typical appearance of the plated dot pattern produced on a copper cathode substrate.
A close-up view of several holes in the cathode mold during the plating process is shown
in Fig. 9. The disc of material indicated is the electrodeposit, as observed using a
low-magnification stereomicroscope. Depending on the current density employed in an
experiment, gas bubbles were often observed rising from or attached to the surface of
the cathode.

The cathode sheets were weighed before and after plating to determine the mass of
the electrodeposit and, given the total coulombs passed, the current efficiency. Electro-
plated deposits from several experiments were prepared metallographically to determine
the uniformity of plating from cross-sectional views and etched to reveal the microstruc-
ture of selected deposits. The samples were etched using a mixture of glacial acetic acid,
nitric acid and water (50:20:10, volume ratio). Samples were examined using optical
and scanning electron microscopy.
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Figure 8. Photograph of a
machined high aspect-ratio
cathode mold (left) and a
copper sheet that shows the
resulting pattern of plated
nickel columns.

Figure 9. Close-up pho-
tograph of nickel deposits
being plated in the bores
of a recessed cathode mold.
The diameter of the bore is
1.7 mm. The apparent con-
tinuation of the tube below
the deposit is a reflection
from the metal foil used as
the substrate for plating.

Experimental Results

The macroscopic morphologies of the electroplated deposits clearly show that the
uniformity of plating on recessed cathodes deteriorates significantly as the applied cur-
rent density is increased above a threshold value specific to each mold geometry. An
example of this behavior is shown in Fig. 10 where photographs taken using a 50X
(nominal) stereo-microscope camera reveal the surface appearance of typical electro-
plated nickel columns. The aspect ratio of this mold was 25 and the current density
increased from 108 to 646 A/m2 as indicated in the caption. At current densities up
to about 320 A/m2, smooth, uniform deposits were obtained. Although a few small
protrusions or cavities (due to bubbles persistently attached to the surface) are evident,
the surfaces are generally flat. At current densities of about 400 A/m2 or more, the
uniformly flat surface was disrupted and nodular deposits formed. The formation of
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Figure 10. The effect
of current density on the
macroscopic morphology of
nickel deposits on recessed
cathodes for which d =
1.7 mm and aspect ratio
was 25. Reading clockwise
from top left, current densi-
ties are 108, 215, 323, 430,
and 646 A/m2. The im-
ages were obtained by opti-
cal microscopy.

bubbles was also aggravated, which resulted in porosity in the deposits. For compari-
son, note that nickel is typically plated in agitated tanks at current densities of 200 to
800 A/m2, and that uniform deposits are produced under such conditions [27].

Despite the differing appearances of the deposits shown in Fig. 10, the current ef-
ficiency (C.E.) of the deposition process was quite high regardless of current density.
Current efficiency was determined by weighing the cathode foil before and after plating
and comparing the mass of the deposit to that calculated based on the Faradaic equiv-
alent for the total charge passed during the experiment. These data are collected in
Table 1 for tests in which the mold bore diameter varied from 1.7 to 6.3 mm. The latter
diameter was chosen as it was the closest that the apparatus used here could approach
plating on a surface for which the aspect ratio was zero, while keeping all other factors
unchanged, due to the necessity of sealing the cathode mold. The data in the table
indicates that C.E. was generally high. Those instances where C.E. exceeds 100% are
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due to small amounts of foreign material trapped in the deposits, which usually had a
net mass of only several to tens of milligrams.

In many experiments, and particularly those conducted at large current densities,
gas bubbles were observed attached to the surface of the cathode. These bubbles ob-
structed the uniform deposition of nickel and significantly affected the macroscopic
appearance of the deposits. While small (< 0.1 mm) bubbles were often seen detaching
from the surface and rising upward through the bores, some bubbles remained attached
throughout the plating experiments. In these cases, smooth curved surfaces were ob-
served that replicated the shape of the attached bubble as the deposit grew around the
obstruction. An example of such a cavity can be seen at the 11 o’clock position of the
top row, right photograph in Fig. 10. In other instances, porosity was created within
the deposit, perhaps as the deposit engulfed a bubble and developed nodules.

The bubbles are comprised of hydrogen that is formed by a secondary cathodic
reaction that competes with the nickel reduction reaction. As the pH of the nickel
sulfamate solution was nearly 4 in all of the tests, the reduction of water is likely more
significant than the reduction of hydrogen ions to produce gaseous hydrogen. Note that
the current efficiency obtained at unobstructed cathodes in agitated plating baths is
typically 99% [28]. Although the current efficiency of nickel plating was ordinarily at
least 98% in virtually all of these experiments, the remaining nominal 1% of the current
is sufficient to create bubbles having the dimensions observed here. If the stagnant
volume of plating solution in the mold bores cannot dissolve hydrogen as quickly as it
forms at the surface of the growing deposit, bubbles will nucleate and grow. Often,
such bubbles were seen to detach from the surface and rise through the bore. Despite
the presence of surfactant in the plating solution, persistent attachment of bubbles was
observed and such bubbles often could not be dislodged by mechanical impacts of the
plating cell.

The most remarkable result of these experiments is that the measured plating cur-
rents are 4 to 137 times greater than the diffusion-limited current given by Eq. (20).
This may be seen in Table 1 which includes a Sherwood number representing the ratio
of measured current to diffusion-limited current. This dimensionless parameter is usu-
ally defined as the ratio of the actual mass transfer at a surface to that which would
have occurred by diffusion alone. An analogous interpretation applies to electroplating
currents, because charge transfer and mass transfer rates are linearly related through
Faraday’s constant and ion charge. As seen in Table 1, Sherwood numbers in excess of
40 were observed at the highest current density for all aspect ratios.

In search of an explanation for these surprising results, a number of hypotheses were
assessed by scoping calculations. It was found that in some of the shorter runs, the
initial inventory of metal ions stored within the recesses could account for a substantial
fraction of the total amount deposited, but in most cases the plating time was long
enough to exhaust that supply. Thus, it was necessary that metal ions be resupplied
to the plating surface by a steady transport process. Additional calculations suggested
that forced flow over the recesses could not produce significant convective mass transfer
to the plating surface. However, it was estimated that depletion of metal ions at the
bottom of the mold could produce a large enough reduction in fluid density to strongly
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Cavity Aspect Current Current Sherwood Rayleigh
Diameter Ratio Density Efficiency Number Number

(mm) (asf)

1.70 10 10 99.7 6.9 3.3× 109

” ” 30 127.5 20.5 ”
” ” 40 101.3 27.5 ”
” ” 50 99.8 34.4 ”
” ” 60 94.2 41.1 ”
” ” 70 97.3 48.0 ”
” ” 70 99.7 48.0 ”

1.70 15 20 100.2 20.5 1.1× 1010

” ” 40 100.5 41.1 ”
” ” 60 98.1 61.6 ”
” ” 60 98.2 61.6 ”
” ” 80 96.4 82.2 ”

1.70 25 20 100.8 34.4 5.2× 1010

” ” 40 107.2 68.7 ”
” ” 60 98.1 103.1 ”
” ” 60 99.2 103.1 ”
” ” 80 89.6 137.5 ”

3.18 8 20 100.8 20.5 1.1× 1010

” ” 40 99.3 41.1 ”
” ” 60 99.7 61.6 ”
” ” 60 99.2 61.6 ”
” ” 80 99.6 82.2 ”
” ” 80 99.5 82.2 ”

6.35 1.6 10 100.6 4.1 7.1× 108

” ” 40 99.6 16.4 ”
” ” 60 99.3 24.6 ”
” ” 80 104.3 32.9 ”
” ” 100 100.9 41.1 ”

Table 1. Current efficiency of nickel plating in cylindrical recesses having various
aspect ratios. Note that 1 A/ft2 (asf) is about 10.8 A/m2.
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circulate the fluid. Rising hydrogen bubbles might also produce the same effect, though
probably not in a steady and repeatable manner.

To verify that buoyancy-driven convection was responsible for the enhanced trans-
port, we performed additional experiments in which the plating apparatus was turned
upside down. In this inverted configuration, maximum plating currents were reduced
by more than an order of magnitude, compared to those observed for an upward facing
plating surface. Thus, there is strong evidence that buoyancy effects can increase plating
rates by one or two orders of magnitude in high aspect ratio feature. Such large plating
currents will be of great benefit in reducing LIGA plating times, provided that they can
be reliably employed at scales much smaller than those used in our experiments. Those
questions are being answered through modeling studies described in the next section.

Buoyancy-Driven Convection

Having experimentally discovered and confirmed the importance of buoyancy-driven
convection in plating of high aspect features, our modeling effort turned toward im-
proved understanding of this transport process. Since it is possible that formation and
release of hydrogen gas bubbles played a significant role in the laboratory configura-
tion, it is necessary to learn whether strong convection can be driven by ion depletion
in the absence of bubbles. This distinction is critical because current densities must
generally be held below the bubble formation threshold to assure acceptable deposit
morphology. In contrast, a moderate level of ion depletion, say 50% at the plating
surface, may greatly improve the transport of both metal ions and dissolved hydrogen
without compromising deposit morphology. Aside from addressing this issue, modeling
is also needed to extrapolate from the feature widths of 1.7 to 6.3 mm, used in our
experiments, to LIGA feature widths of 10 microns or less. To meet these needs and
to prepare for future process optimization, we developed and verified a two dimensional
model of convection in high aspect features.

Buoyancy-driven fluid motions and related transport processes have been extensively
studied, particularly in heat transfer applications where the fluid density varies with
the temperature. Although such temperature variations may exist in electroplating
processes, the corresponding density variations are no greater than 0.3%, even for a
temperature difference as large as 30 C. Of far greater importance is the local reduction
in fluid density resulting from the depletion of metal ions at the plating surface. Removal
of these heavy ions from the adjacent electrolyte reduces the local fluid density by as
much as 10% when plating at relatively high rates from 1 M nickel baths. Because
of its reduced density, the depleted electrolyte rises from an upward facing electrode,
permitting the inflow of fresh electrolyte.

Despite the relatively large density differences associated with ion depletion, there
is very little mention of natural convection in the electroplating literature [29,30]. This
is because natural convection plays only a secondary role in conventional plating of flat
surfaces; there fresh electrolyte is supplied to the plating surface by vigorous stirring
of the bath. Such forced flows of electrolyte may also help to stir the upper portion of
a LIGA feature such as a narrow trench or a hole. However, the strength of the this
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forced convective transport decreases logarithmically with the ratio of feature depth to
width [31,32], making it nearly irrelevant for aspect ratios beyond three or four. Thus,
only buoyancy-driven convection is important to electrodeposition in high aspect-ratio
features.

Although the literature of heat and mass transfer includes hundreds of studies of nat-
ural convection, none deal directly with the configuration of interest here [33]. Studies
addressing tall slender LIGA-like domains are mainly concerned with transport induced
by horizontal gradients of temperature and density, as in the so called storm window
problem. Conversely, previous studies exploring vertical density gradients have focused
on relatively shallow layers, as in the classical Rayleigh-Benard problem that is posed
on a heated plane of infinite width. There are, of course, numerical studies of natural
convection in rectangular domains having vertical density gradients [34-37], but none
exceeds an aspect ratio of two. Similarly, experimental studies are limited to a maxi-
mum aspect ratio of four, and there the Rayleigh and Reynolds numbers are orders of
magnitude greater than those encountered in LIGA [38]. Thus, the regime of interest
for LIGA remains unexplored.

To better understand the role of natural convection in electroplating of deep re-
cesses, we have performed a series of numerical simulations. These calculations describe
flow and transport in deep trenches like that shown in Fig. 1. The results, presented be-
low, indicate that natural convection can easily provide an order of magnitude increase
in ion transport, consistent with our earlier experimental observations. However, it is
also found that convective flow instabilities may produce a variety of different flow pat-
terns and transport rates, even under conditions of fixed geometry and nearly identical
external constraints. Thus, a thorough understanding of the process will be needed to
gain the benefits of enhanced transport in a predictable manner that aids, rather than
hinders, uniformity of results.

Governing Equations: Buoyancy-Driven Transport

The equations describing steady-state conservation of mass for a nearly incompress-
ible fluid containing multiple chemical species may be written

∇·u = 0 (21)

∇·(uc) = ∇·(D∇c) (22)

where u = ui + vj is the fluid velocity vector, c is the partial molar density of any
chemical component, and D is the effective binary diffusivity for that species. Rather
than solving continuity equations for all species of a complex bath, we now focus atten-
tion on a particular component that is largely responsible for density reduction at the
plating surface. Thus, c will represent the concentration of a singular depositing metal
ion.

21



Under the customary Boussinesq approximation, the fluid density is treated as
though it were uniform except in evaluating the buoyancy force, ρg, appearing in the
following statement of momentum conservation.

ρ(∇×u)×u = −∇p− ρg +∇·(µ∇·u) (23)

Here, p and µ are the pressure and the kinematic viscosity. The density variations that
drive the motion can be related to ion concentrations by a linear approximation of the
form

ρ = ρ0 + ∆ρ
(
c− c0

c0

)
(24)

in which c0 and ρ0 are the bath concentration and density, and ∆ρ is the density
reduction that results from full depletion of the plating species. To isolate the effects of
buoyancy, the electric field forces have been omitted from the momentum balance. As
shown earlier, the associated ion drift velocities provide only a modest enhancement to
diffusive transport under typical plating conditions. For further simplicity, the viscosity
and diffusivity will be presumed uniform and our example calculations will be restricted
to some idealized, but fundamental, two dimensional geometries.

To facilitate numerical solution by finite difference methods, it is convenient to
rewrite the governing equations for two dimensional flow in terms of the normalized
stream function ψ∗ and vorticity ω∗ [39,40]. The stream function is defined in a manner
that ensures satisfaction of the bulk continuity equation.

u∗ =
∂ψ∗

∂y∗
and v∗ = −∂ψ

∗

∂x∗
(25)

Here, the position coordinates and velocity components are respectively scaled by the
feature height, h, and a reference velocity, D/h.

x∗ =
x

h
, y∗ =

y

h
, u∗ =

uh

D
, v∗ =

vh

D
, ψ∗ =

ψ

D
, ω∗ =

ωh2

D
(26)

In terms of these scaled variables and a normalized metal ion concentration, c∗ = c/c0,
the species conservation equation becomes

u∗
∂c∗

∂x∗
+ v∗

∂c∗

∂y∗
=
∂2c∗

∂x∗2
+
∂2c∗

∂y∗2
(27)

Further, by cross differentiation and summation of the x and y components of the mo-
mentum equation, the pressure is eliminated from the following expression of momentum
conservation

1
Sc

(
u∗
∂ω∗

∂x∗
+ v∗

∂ω∗

∂y∗

)
= −Ra

(
∂c∗

∂x∗
cosφ+

∂c∗

∂y∗
sinφ

)
+
∂2ω∗

∂x∗2
+
∂2ω∗

∂y∗2
(28)
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in which the normalized vorticity is defined in terms of velocity gradients.

ω∗ =
∂v∗

∂x∗
− ∂u∗

∂y∗
(29)

Note that the buoyancy forces driving convective motion now appear as spatial deriva-
tives of the metal ion concentration, c∗, and that φ is the inclination angle of the y
axis, measured from the vertical. Finally, the stream function and vorticity are related
through the equation

ω∗ = −
(
∂2ψ∗

∂x∗2
+
∂2ψ∗

∂y∗2

)
(30)

as readily verified by substituting Eqs. (25) into Eq. (29). This last elliptic equation
will be used to calculate the stream function from candidate values of the vorticity.

The two parameters appearing in the momentum equation are the Rayleigh and
Schmidt numbers; both are written below in terms of the dynamic viscosity ν = µ/ρ0.

Ra =
∆ρ gh3

ρ0Dν
and Sc =

ν

D
(31)

Since the Schmidt number is typically of the order 103 for small ions in an aqueous
solution, the advective vorticity transport on the left side of Eq. (28) is generally negli-
gible. In this asymptotic regime, there is essentially no dependence of the solutions on
the Schmidt number. The only remaining parameter is the Rayleigh number, a measure
of the strength of the buoyancy-driven motion. For LIGA features having depths, h,
ranging from 0.1 to 1.0 mm, the Rayleigh number is on the order of 105 to 108. This
estimate is based on a relative density difference of ∆ρ/ρ0 = 0.1, as appropriate for a
1 M nickel bath and full depletion of metal ions at the deposition surface. The actual
value of the normalized surface concentration is, however, controlled by the boundary
condition at the plating surface.

Numerical Approach

The preceding partial differential equations are solved numerically on the T-shaped
domain shown in Fig. 1. The lower rectangular part of the domain represents a trench-
like LIGA feature of height h and width w. Since the side walls of the trench are
electrical insulators, plating occurs on the floor alone. The wider region above the
trench represents a portion of either a plating bath or of a channel used to supply fresh
electrolyte. Although this bath or channel is actually much larger than the trench,
only a small portion need be included in the computational domain, provided that the
boundary conditions are judiciously chosen. To reduce sensitivity of the solution to the
vertical location of the upper boundary, the horizontal shear stress, τ∗, is prescribed
there rather than the velocity, and the flow is permitted to pass vertically through
this boundary. If the vertical velocity is downward, the normalized concentration is
set to unity on the upper boundary, as appropriate for the inflow of fresh electrolyte.
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Conversely, for an upward flow, the vertical concentration gradient is set to zero, letting
the boundary value approach that of the exiting flow.

∂2ψ∗

∂y∗2
=
∂u∗

∂y∗
=
τh2

µD
= τ∗ and c∗ = 1 or

∂c∗

∂y∗
= 0 (32)

A positive shear stress, τ∗, drives a horizontal flow above the feature, with fluid entering
the top portion of the T-shaped domain through its left boundary and leaving to the
right. At the inflow boundary, it is required that the vertical velocity be zero and that
the normalized ion concentration be unity.

∂ψ∗

∂x∗
= 0 and c∗ = 1 (33)

Similarly, for a minimally restrictive outflow boundary,

∂ψ∗

∂x∗
= 0 and

∂c∗

∂x∗
= 0 (34)

All of the impermeable solid boundaries, both within the feature and external to it,
may be viewed as one continuous streamline on which

ψ∗ = 0 and
∂c∗

∂η∗
= 0 (35)

where η∗ is in a direction normal to each surface. The first of these applies at all solid
boundaries, while the second applies everywhere except on the deposition surface at
the mold bottom. In addition, both of the velocity components are zero on all solid
surfaces, and these conditions are reflected in the boundary values of vorticity that are
calculated from the defining equation (29).

Although the plating surface is actually a moving boundary, its velocity is far too
small to influence the flow and concentration fields. The ion flux to the plating surface
is, however, of critical importance because it produces the density gradients that drive
the flow. Rather than incorporating any specific electrode kinetics, we chose to apply
a more generic boundary condition relating the incoming diffusion flux to a surface
deposition rate that is proportional to the local ion concentration.

∂c∗

∂y∗
= K∗c∗ on y∗ = 0 (36)

To explore transport limitations, our sample calculations will employ a very large value
of the dimensionless rate coefficient, K*, corresponding to a high current density and a
small surface concentration.

The equations are solved numerically on a square mesh having 41 nodal points
across the trench. Derivative operators are replaced by finite difference approximations
to obtain a system of algebraic equations for the nodal point values of all dependent
variables. The iterative solution procedure includes several steps: (1) solve Eq. (27) for
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c∗ij ; (2) use derivatives of the new concentration field in solving Eq. (28) for ω∗ij ; (3)
use the new vorticity field in solving Eq. (30) for ψ∗ij ; (4) differentiate the new stream
function to calculate velocity components from Eq. (25); (5) differentiate the velocity
field to calculate boundary values of vorticity from equation (29); and (6) repeat to
convergence. Because of the strong coupling among all of the equations, there is little
to be gained by matrix inversion of to obtain tentative solutions. Instead, each of the
individual nodal equations are solved in sequence for the pivotal value that satisfies
that equation with all other dependent variables held fixed at their most recent values.
Only one iteration is performed for each field before proceeding to the next dependent
variable in the sequence listed above. Convergence is generally improved by weighted
averaging of new and old iterates.

Sample Calculations

The following results illustrate both the importance and the complexity of convective
transport in electroplating deep features of high aspect ratio. As a prelude to buoyancy-
driven flows, solutions are first presented for convection driven by external flow across
the top of a deep feature. Subsequent sample calculations explore the combined effects
of external flow and buoyancy. We will show that buoyant transport is clearly dominant
in high aspect-ratio features, but that fluid speeds and transport rates may vary by a
factor of two or more between equally likely flow patterns.

Figure 11 shows the calculated streamlines and concentration field for a flow driven
by an external shear stress of τ∗= 104, a Rayleigh number of zero, and an aspect ratio
of A = h/w = 4. This normalized shear stress is roughly that produced at the top of a
1 mm deep LIGA feature by a fluid speed of 60 mm/s in a channel of height 20 mm, like
that used in the laboratory experiments described earlier. Since the general problem of
a shear-driven cavity has been studied previously [32,34-37], this example serves both
to validate our numerical procedure and to illustrate shear driven flow in the absence
of buoyancy. We see that the streamlines of the external flow bend slightly downward
into the cavity, increasing the local shear stresses at the upper edges of the cavity. This
is one of the reasons for applying the external boundary conditions well above the mold
top, since the velocity, shear stress and species concentration at the top of the feature
are not known beforehand.

The shear-driven circulation within the trench of Fig. 11 consists of three counter-
rotating cells, each having an aspect ratio of roughly 1.3. A preferred cell aspect ratio of
this value, or perhaps slightly greater, is consistently observed for shear driven flows in
all deep trenches, though deviations must obviously occur for noninteger ratios of trench
depth to preferred cell size. The stream line pattern within each cell is nearly identical,
so long as the Reynolds number, Re = uw/ν is no greater than a few hundred. That
criterion is well satisfied here since Re = τ∗/SA2 < 1. Despite this similarity of flow
pattern, the maximum fluid speeds within each circulation cell decreases by a factor
of roughly 103 from one cell to the adjacent cell below. The resulting six order-of-
magnitude decrease in speed between the top and bottom cells of Fig. 11 motivated our
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Figure 11. Stream
lines and concentration iso-
pleths for forced convection
driven by horizontal flow
above feature. Fluid speed
within convective cells de-
creases by a factor of 103

from one cell to the next.
Uniformly spaced horizon-
tal isopleths indicate a con-
dition of purely diffusive
transport beneath the up-
permost cell.

use of a logarithmic spacing between ψ∗ values on the streamlines shown. Even then,
the spacing is sparse in the lower cells.

A contour plot of the ion concentration field is shown on the right side of Fig. 11.
The partial molar density, c∗, of any plating species is constant on each of the isopleths.
In contrast to the logarithmic spacing of streamlines, the isopleths are separated by
uniform increments of concentration. Thus, the equal physical spacing of isopleths along
most of the trench indicates that the concentration gradient is uniform, as required for
steady state transport by diffusion alone. Wider spacing of the uppermost isopleths is
indicative of strong convective transport in the upper circulation cell. Note that the
isopleths bend downward on the right side of the trench in response to the downflow of
fresh electrolyte.

The Sherwood number, Sh, a figure of merit for convective transport, is the ratio
of the total vertical transport by convection and diffusion to that which would occur
by diffusion alone. Continuity requires that the Sherwood number for a steady process
must be the same at all elevations in the feature. It is most conveniently evaluated at
the plating surface where the vertical velocity must vanish and local transport occurs
only by diffusion, whereupon

Sh =
(

h

D∆C

)
1
w

∫ w

0
D
∂C

∂y
dx = A

∫ 1/A

0

∂c∗

∂y∗
dx∗ on y∗ = 0 (37)

Applying this definition to the calculation of Fig. 11 yields a Sherwood number of 1.2,
indicating only a 20% improvement over diffusion.
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The fundamental limitation of forced convection transport in high aspect-ratio fea-
tures is well illustrated by the example of Fig. 11. Even if the uppermost convective cell
were perfectly mixed with a uniform concentration of c∗=1, the overall flux would still
be limited by diffusion through the relatively stagnant lower region. The net effect of
a strongly convective upper cell is a reduction in diffusion distance by a ratio of three
to two, yielding a maximum Sherwood number of about 1.5. Further increases in the
Sherwood number can only be obtained by convective transport in the second cell from
the top. Since it rotates a thousand times slower than the cell above, a thousand-fold
increase in the external shear force is needed to achieve significant convection in that
cell and thereby increase the Sherwood number to a maximum of three. By this same
reasoning, the external shear velocity would have to be increased by a factor of 1015 to
obtain Sherwood numbers greater than two for an aspect ratio of ten.

Unlike external shear forces, buoyancy forces may induce strong vertical motions
that are nearly independent of elevation. Such a flow field is illustrated in Fig. 12 for
Ra = 106 and, as before, τ∗ = 104. In contrast to a shear driven flow, only one elongated
circulation cell is produced, rather than many cells of nearly unit aspect ratio. The
relatively dense external flow now turns downward into the trench, then descends to
the bottom where it loses some of its metal ions by diffusion to the plating surface.
The depleted fluid then rises to the surface where it rejoins the external stream. The
calculated circulation is counter clockwise, though a strong enough external shear would
close the top of the cell and reverse its direction. Note that the streamlines of Fig. 12
are spaced uniformly in ψ∗, such that the volumetric flow rate between any adjacent
streamlines is the same. Thus, the relatively uniform physical spacing of streamlines
indicates that flow speeds are everywhere comparable, even in the turning region near
the bottom.

The isopleths of Fig. 12 reveal a narrow boundary layer just above the plating
surface. In this region the fluid motion is essentially horizontal, requiring that the
vertical flux be carried by diffusion alone. The local vertical gradient must thus be
steeper here than in the upper region where the flux is carried advectively by opposing
vertical streams having differing ion concentrations. These side-to-side differences in
concentration are apparent in the nearly vertical, rather than horizontal, orientation
of the isopleths at midheight. As the descending fluid approaches the plating surface,
it compresses the isopleths on the left side, whereas the ascending fluid expands the
isopleths on the right. This asymmetry of motion results in the asymmetric flux profile
indicated by a dashed curve in the left frame of Fig. 12. The peak flux occurs near the
center, where the horizontal velocity is greatest and the diffusion layer is thinnest. The
vertical scale of this flux profile is the same as in the preceding Fig. 11, so the magnitude
is clearly greater in the present buoyancy-driven flow.

The ion flux to plating surface of Fig. 12 corresponds to a Sherwood number of
about 14, exceeding that for the shear driven flow by more than a factor of ten. This
level of enhancement is consistent with the concentration field, since the steep gradients
are now confined to just 10% of the feature depth. Ion concentrations just above that
layer are nearly equal to the bath concentration, shortening the diffusion distance by a
factor of ten.
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Figure 12. Stream lines
and concentration isopleths
for a buoyancy-driven flow
with a Rayleigh number of
106. Strong convective mo-
tion carries fresh electrolyte
deep into feature, reducing
the thickness of the diffusive
boundary layer at the plat-
ing surface.

Cell structures in buoyancy-driven flows may be altered significantly by slight vari-
ations in boundary or initial conditions. For example, the bicellular pattern shown in
Fig. 13 has the same Rayleigh number and the same external shear stress as the mono-
cellular pattern of Fig. 12. In fact, the bicellular structure is the preferred steady state
solution. The single cell shown earlier was obtained by tilting the axis of the feature
slightly off of vertical. In that tilted orientation, the component of gravity acting across
the feature pulls the heavier fluid toward the lower sidewall. Thus, the tilt disfavors
a bicellular pattern in which the opposite rotation of the cells necessarily places the
heavier fluid on opposite walls in the upper and lower cells. Similarly, the direction and
strength of the external flow or a slight bias of initial conditions can produce alternative
flow patterns having factor of two differences in transport.

Multicellular flows are generally less efficient than single cell structures in transport-
ing ion species. In the preceding examples, the Sherwood number decreased by almost
a factor of three, from 14 to 5, between the single and multiple cells driven by nearly
identical shear and buoyancy forces. The primary reason for this is apparent in the ion
concentration fields of Figs. 12 and 13. Although both configurations have boundary
layers at the deposition surface, only the bicellular flow has an additional diffusion layer
at midheight. Here, steep concentration gradients are needed for diffusion exchange
of ionic species between the upper and lower cells. Advection cannot enhance this ex-
change since no flow crosses between the two cells. The presence of two diffusion layers,
rather than one, reduces the Sherwood number by roughly a factor of two. In addition,
the presence of multiple cells generally reduces horizontal density differences, as also
apparent in comparing isopleths, leading to slower fluid speeds and weaker transport.
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Figure 13. Bicellu-
lar convective motion for
a Rayleigh number of 106.
Although this flow pattern
is more stable than a sin-
gle cell, the transport is in-
hibited by the presence of a
diffusion layer at midheight
where ion species are ex-
changed between the two
counter-rotating cells.

Contrary to intuition, an increase in the external fluid speed above the mold can
sometimes reduce the overall transport to the plating surface. If, for example, the
external shear is increased sufficiently in the bicellular flow of Fig. 13, the external
stream will flow across the top of the mold, rather than circulating into the feature.
The upper convective cell then becomes a closed loop that rotates faster than before,
though in the opposite direction. The lower cell also reverses direction but increases in
speed. However, despite these increases in fluid speed, the overall transport is reduced
because a new diffusion layer must form at the top of the mold to transfer ions from
the external flow into the top cell.

Increases in Rayleigh number generally produce stronger flows with increased trans-
port. However, the diversity and complexity of flow patterns also increases with Rayleigh
number. In addition, buoyancy-driven flows become less stable at high Rayleigh number
and are likely to wander between two or more alternative patterns [33,41]. These obser-
vations are illustrated by the flow field shown in Fig. 14. Here, the Rayleigh number is
107, ten time greater than in previous calculations; the shear stress above the feature is
the same as before. The time-averaged Sherwood number is 17, though instantaneous
values range from 10 to 24.

The flow field shown in Fig. 14 consists of three closed cells, two of them side by
side. In other instantaneous flow patterns these side-by-side cells are sometimes nearly
symmetric about the vertical centerline of the feature and occasionally extend over most
of the height. At other times one cell will dominate as the other shrinks into a corner.
Occasionally, one of the lower cells becomes pinched at the waist and splits vertically in
half, a process underway in the pattern displayed. In response to these gyrations, the
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Figure 14. Patholog-
ical structure of flow for
a Rayleigh number of 107.
Flow is not truly steady,
but instead oscillates peri-
odically among several mul-
ticellular patterns. In re-
sponse, instantaneous Sher-
wood numbers vary by
about a factor of two.

upper cell expands and contracts in vertical extent. Despite all of this chaotic motion,
the time average of the Sherwood number converges to a relatively stable mean on time
scales much shorter than LIGA plating times. Thus, the chaotic nature of the flows
may not be detrimental.

Three diffusive boundary layers are seen in the concentration field of Fig. 14. The
steepest gradients and largest difference in concentration occur at the bottom. The other
two boundary layers transfer ion species between the individual flow cells. Despite the
relatively uniform appearance of the lower boundary layer, the flux at the center line is
more that twice as great as the flux to the corners. The resulting excess metal deposition
at the center should produce an arched lower boundary protruding into the mold that
could either aggravate or help alleviate the nonuniformity of the flux. This question will
be addressed in future calculations that evolve the shape of the deposition boundary.

The results of these numerical studies, are being used to guide the development of an
analytical model that yields the Sherwood number as a function of the Rayleigh number,
Schmidt number, and aspect ratio. The analytical model includes four basic features:
(1) a momentum equation relating flow speeds to the horizontal difference in density
between ascending and descending streams; (2) a horizontal density difference controlled
by diffusion between these counter-flowing streams; (3) a boundary layer relationship
between fluid speed and diffusion layer thickness; and (4) matching conditions between
the vertical convective fluxes and the diffusion fluxes through boundary layers. An
obvious difficulty in this endeavor is predicting the number of cells. However, at least
for moderate Rayleigh numbers, the desired structure is a single cell which may be
obtainable in practice by tilting the mold. It may even be possible to deduce the
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number of cells though application of a stability criterion. At present, we simply treat
the number of cells as an input parameter.

Rather than describing details of the analytical model, we briefly explain two of the
most important results. Both of these analytical results are consistent with numerical
calculations performed thus far but still require further verification. First, the analytical
model predicts that no motion will occur for Rayleigh numbers less than a critical value
that is strongly dependent on the aspect ratio, A = h/w.

Ra crit = 192A4 (38)

For plating of metal ions from 1 M nickel baths into molds having a depth of 1 mm, this
criterion suggests that significant convection will only occur for aspect ratios less than
about 10 or 20. The allowable aspect ratio is twice as great in features half as deep.
However, it is important to note that this criterion, and all of the foregoing calculations,
address fluid motions that are two dimensional in a plane across the trench. If instead
the fluid circulates in the long direction of a trench, the critical Rayleigh number is
given by

Ra crit = 192A2

(
h

L

)2

(39)

in which L is the trench length. This would permit convection for aspect ratios as
large as a few hundred in trenches having a length-to-depth ratio near unity. The more
restrictive criterion would still apply to holes and short trenches. Thus, the varying
geometry of individual features in a given mold may cause order of magnitude differences
in deposition rates, and in many cases deposition rates will be subject to the diffusion
limitations previously described.

A second result of the analytical modeling is that, for large enough Rayleigh num-
bers, the Sherwood number increases as the third root of Rayleigh number.

Sh = 0.07
Ra1/3

Ncell

or q = 0.07
D

Ncell

(
∆ρ g
ρ0Dν

)1/3

(40)

Here, Ncell is the number of convective boundary layers and q is the ion flux to the
deposition surface. This analytical result is in good agreement with those of previous
experimental studies [38,42]. Also, since h disappears from the second of these equations,
it follows that q is independent of the feature depth in a regime where this third root
scaling holds. Under these circumstances, features of all depths and widths will plate at
the same rate, a condition of great benefit to LIGA. Work is now in progress to verify
this expectation and to further explore its application to LIGA plating.
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Summary

In this study we have undertaken a combined theoretical and experimental program
intended to help understand ion transport limitations and the effects of these limitations
on electrodeposition for LIGA microdevice fabrication. Two numerical models have
been developed: one describes either quasi-steady or transient one-dimensional diffusive
transport of multiple ion species; the second describes two-dimensional diffusive and
advective transport of a single species.

The first numerical model is implemented within a numerical framework that is
readily adapted to a range of bath compositions, dissociation reactions, and electrode
kinetics. To date we have focused on an eight-species model describing the simultaneous
deposition of nickel and iron from a plating bath containing sulfuric acid and sulfates of
both nickel and iron. The eight species presently included in the model are Fe2+, FeOH+,
Ni2+, NiOH+, HSO−4 , SO2−

4 , OH−, and H+. In this model, transport of these ion species
to the mold bottom is governed by diffusion, electromigration, and the homogeneous
reactions between species as they move toward the deposition surface. The model can
be used to describe the deposition of either nickel or iron, as well as the codeposition of
both species to produce various permalloy compositions. In addition to ion transport,
the mathematical model describes the quasi-steady electric field within the mold and
local deposition at the mold bottom.

Electric potentials are computed either by solving the Poisson equation relating the
potential to the local charge density or by imposing a condition of local electroneutrality.
The latter approximation provides solutions that are in good agreement with those using
the more rigorous Poisson approach over a wide range of mold thicknesses and total
current densities at a greatly reduced computational expense.

The Arrhenius kinetics of the electrode reactions are incorporated through Butler-
Volmer equations relating the ion current density (equivalent to the deposition rate)
to the electrode overpotential, temperature, charge transfer coefficient and reaction
pre-exponential constants for each ion species. These equations are strongly coupled
to the transport equations because electrode reaction rates depend strongly on local
ion concentrations at the electrode surface. As part of this work we have developed
a new kinetics model for the codeposition of nickel-iron alloys based on a reference
potential for each ion species that varies with composition of the alloy surface. This
new approach accurately describes the so-called anomalous codeposition of nickel-iron
alloys (as measured by others) in which the alloy composition depends not only on bath
composition but also on the total current.

The coupled species transport and electric field equations are solved using a coupled
stiff differential and algebraic solver. Two main methods of solution have been devel-
oped. The first is a shooting technique in which governing equations are integrated
in space from the mold top to the mold bottom, and the surface potential and partial
iron and nickel currents are varied to satisfy Butler-Volmer relations at the deposition
surface. This method is useful for obtaining very accurate solutions, but is limited to
quasi-steady problems. The second method relies on a more conventional numerical
approach in which the governing equations are spatially discretized and then integrated
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in time. Although less accurate, this method is useful in solving the transient problems
associated with pulsed plating techniques.

Our experiments were intended to explore essential features of LIGA-like metal
deposition under well characterized conditions suitable for comparison with theoretical
calculations. The apparatus consists of a transparent channel about 0.3 m long having
a 20 by 50 mm rectangular cross-section. Electroplating solution was pumped from
a temperature-controlled reservoir through this channel at a prescribed flow rate. A
recessed cathode, analogous to a LIGA mold, and an anode, appropriate to the metal
being deposited, are mounted in opposite walls of the channel with faces parallel to the
flow and flush with the internal surfaces. A typical cathode mold consisted of a PMMA
disc having several identical drill-holes in which metal was deposited. By varying the
hole diameter and mold thickness, a range of aspect ratios from 1.6 to 25 were obtained.

Experiments were conducted using a commercial 1.36 M (80 g/`) nickel sulfamate
plating solution at a nominal temperature of 38 C. Current densities varying from about
100 to 1000 A/m2 were applied to a number of molds over periods of approximately 24
hours. We found that surface morphology degraded significantly at the higher currents,
and that larger aspect ratios produced poorer morphologies for a given current density.
At an aspect ratio of 25, smooth uniform deposits were produced at currents up to about
300 A/m2, but severe surface defects were observed at current densities of 400 A/m2

and above. Current efficiencies were generally high for all of the test conditions, and
efficiencies fell below 90% only at the highest current densities and feature aspect ratios.

The results of these experiments indicate that current densities well in excess of
the diffusion limited currents may still yield acceptable morphologies in the deposited
metal. This surprising result led to developing a second numerical model describing two
dimensional convective motions within a single trench-like LIGA feature. The governing
Navier Stokes equations include buoyancy forces resulting from ion depletion, as well as
pressure, viscous and inertial forces. Although multiple species can be easily added, the
current model includes only one transport equation describing diffusion and advection
of a single metal ion. Rather than solving the primitive equations, the continuity and
momentum equations are rewritten in terms of the stream function and vorticity and
then discretized and solved on a rectangular finite-difference mesh. Fluid motions within
the feature are driven both by external flow over the mold top and by depletion of metal
ions at the deposition surface. The model was used to perform a series of numerical
simulations over a range of external fluid speeds and fluid density variations typical of
LIGA applications.

The results of these two-dimensional calculations first revealed that the experimen-
tally observed hundred-fold increase in limiting currents cannot be attributed to fluid
motion within the feature driven by external flow over the mold. Such flows produce
a vertical stack of convective cells having nearly unit aspect ratio. However, the max-
imum fluid speed in each successive cell falls by nearly three orders of magnitude, so
fluid motion more than a few feature widths from the mold top is negligible for any
practical fluid velocity outside the mold. Conversely, buoyancy-driven flows were found
to have elongated convective cells with vertical speeds nearly independent of elevation
within the feature. Such flows can easily account for the hundred-fold increase in lim-
iting current observed in our experiments. Even at the smaller scale of LIGA features,
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transport rates and maximum current densities should exceed diffusion limits by more
than an order of magnitude. Moreover, for sufficiently strong convection, plating rates
should be independent of feature width and depth, a condition of great practical benefit
to electroforming in the LIGA process.

Nomenclature

ai electrode kinetics pre-exponential constant
ci species concentration
Di effective binary diffusivity
e elementary charge (1.602× 10−19 C)
E electric field
F Faraday constant (9.648× 104 C/mol)
h mold thickness
k Boltzmann constant (1.381× 10−23)
m number of spatial grid points
n number of species
N Avogadro number (6.023× 1023)
R ideal gas constant
Si homogeneous reaction source or sink
T temperature
u fluid velocity
u horizontal fluid speed
v vertical fluid speed
V electric potential
w feature width
x transverse position
y vertical position
αi charge separation constant
ε permittivity of vacuum (8.854× 10−12 F/m)
φ normalized concentration
ψ stream function
ζ vorticity

Subscripts and Superscripts
0 denotes reference value
B of plating bath
S at deposition surface
* asterisk denotes normalized variable
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